VOUS AVEZ OUBLIÉ VOS IDENTIFIANTS ?

LE DISQUE DUR

Historique et Conception

Source : Wikipédia

Dès 1956, dans un disque dur, on trouve des plateaux rigides en rotation. Chaque plateau est constitué d’un disque réalisé généralement en aluminium, qui a les avantages d’être léger, facilement usinable et paramagnétique. À partir de 1990, de nouvelles techniques utilisent le verre ou la céramique, qui permettent des états de surface encore plus lisses que ceux de l’aluminium. Les faces de ces plateaux sont recouvertes d’une couche magnétique, sur laquelle sont stockées les données. Ces données sont écrites en code binaire [0,1] sur le disque grâce à une tête de lecture/écriture, petite antenne très proche du matériau magnétique. Suivant le courant électrique qui la traverse, cette tête modifie le champ magnétique local pour écrire soit un 1, soit un 0, à la surface du disque. Pour lire, le même matériel est utilisé, mais dans l’autre sens : le mouvement du champ magnétique local engendre aux bornes de la tête un potentiel électrique qui dépend de la valeur précédemment écrite, on peut ainsi lire un 1 ou un 0.

Un disque dur typique contient un axe central autour duquel les plateaux tournent à une vitesse de rotation constante. Toutes les têtes de lecture/écriture sont reliées à une armature qui se déplace à la surface des plateaux, avec une ou deux têtes par plateau (une tête par face utilisée). L’armature déplace les têtes radialement à travers les plateaux pendant qu’ils tournent, permettant ainsi d’accéder à la totalité de leur surface.

Le disque peut-être positionné horizontalement ou verticalement selon le boîtier.

L’électronique associée contrôle le mouvement de l’armature ainsi que la rotation des plateaux, et réalise les lectures et les écritures suivant les requêtes reçues. Les firmwares des disques durs récents sont capables d’organiser les requêtes de manière à minimiser le temps d’accès aux données, et donc à maximiser les performances du disque.

Disque dur
Par Agrillo Mario Me contacter — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15886766
Par Agrillo Mario Me contacter — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15886809
Plateaux Disque

Les plateaux sont solidaires d’un axe sur roulements à billes ou à huile. Cet axe est maintenu en mouvement par un moteur électrique. La vitesse de rotation est actuellement (2013) comprise entre 3 600 et 15 000 tours par minute (l’échelle typique des vitesses est 3 600, 4 200, 5 400, 7 200, 10 000 et 15 000 tr/min). La vitesse de rotation est maintenue constante sur tous les modèles, en dépit parfois de spécifications floues suggérant le contraire. En effet, suivant l’augmentation des préoccupations environnementales, les constructeurs ont produit des disques visant l’économie d’énergie, souvent dénommés « Green » ; ceux-ci sont annoncés comme ayant une vitesse de rotation variable (la vitesse de rotation n'est pas variable, mais l'électronique du disque arrête complètement la rotation quand le disque n'est pas utilisé pendant une longue période ; d'autres disques récents non dénommés "green" font de même avec, semble-t-il, un délai de mise en veille moins court), laissant donc supposer qu'au repos ils tourneraient plus lentement en réduisant leur consommation électrique, et augmenteraient cette vitesse en cas de sollicitations. Il a cependant été confirmé (notamment par des tests acoustiques) que cette information était erronée : ces disques fonctionnent bien à vitesse constante, plus basse que la vitesse standard de 7 200 tr/min (soit 5 400 tr/min pour Western Digital et 5 900 tr/min pour Seagate).

Les disques sont composés d’un substrat, autrefois en aluminium (ou en zinc), de plus en plus souvent en verre, traité par diverses couches dont une ferromagnétique recouverte d’une couche de protection. L’état de surface doit être le meilleur possible. Les substrats des plateaux n'évolueront plus, ils seront, à terme, remplacés par les disques Solid-state drive.

Note : contrairement aux CD/DVD, ce sont d’abord les pistes périphériques (c'est-à-dire les plus éloignées du centre du plateau) qui sont écrites en premier (et reconnues comme « début du disque »), car c’est à cet endroit que les performances sont maximales : en effet, la vitesse linéaire d'un point du disque est plus élevée à l'extérieur du disque (à vitesse de rotation constante) donc la tête de lecture/écriture couvre une plus longue série de données en un tour qu’au milieu du disque

Tête de lecture écriture
Par Agrillo Mario Me contacter — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15886857
Par Agrillo Mario Me contacter — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15886835
Tête de lecture écriture
Par Mario52 Me contacter — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15911485

Fixées au bout d’un bras, elles sont solidaires d’un second axe qui permet de les faire pivoter en arc de cercle sur la surface des plateaux. Toutes les têtes pivotent donc en même temps. Il y a une tête par surface. Leur géométrie leur permet de voler au-dessus de la surface du plateau sans le toucher : elles reposent sur un coussin d’air créé par la rotation des plateaux. En 1997, les têtes volaient à 25 nanomètres de la surface des plateaux ; en 2006, cette valeur est d’environ 10 nanomètres.

Le moteur qui les entraîne doit être capable de fournir des accélérations et décélérations très fortes. Un des algorithmes de contrôle des mouvements du bras porte-tête est d’accélérer au maximum puis de freiner au maximum pour que la tête se positionne sur le bon cylindre. Il faudra ensuite attendre un court instant pour que les vibrations engendrées par ce freinage s’estompent.

À l’arrêt, les têtes doivent être parquées, soit sur une zone spéciale (la plus proche du centre, il n’y a alors pas de données à cet endroit), soit en dehors des plateaux.

Si une ou plusieurs têtes entrent en contact avec la surface des plateaux, cela s’appelle un « atterrissage » et provoque le plus souvent la destruction des informations situées à cet endroit. Une imperfection sur la surface telle qu’une poussière aura le même effet. La mécanique des disques durs est donc assemblée en salle blanche et toutes les précautions (joints, etc.) sont prises pour qu’aucune impureté ne puisse pénétrer à l’intérieur du boîtier (appelé « HDA » pour « Head Disk Assembly » en anglais).

Un contrôleur de disque est l’ensemble électronique qui contrôle la mécanique d’un disque dur. Le rôle de cet ensemble est de piloter les moteurs de rotation, de positionner les têtes de lecture/enregistrement, et d’interpréter les signaux électriques reçus de ces têtes pour les convertir en données exploitables ou d’enregistrer des données à un emplacement particulier de la surface des disques composant le disque dur.

Sur les premiers disques durs, par exemple le ST-506, ces fonctions étaient réalisées par une carte électronique indépendante de l’ensemble mécanique. Le volumineux câblage d’interconnexion a rapidement favorisé la recherche d’une solution plus compacte : le contrôleur de disque se trouva alors accolé au disque, donnant naissance aux standards SCSI, IDE et maintenant SATA.

L’appellation « Contrôleur de disque » est souvent employée par approximation en remplacement de « Contrôleur ATA » ou « Contrôleur SCSI ». « Contrôleur de disque » est une appellation générique qui convient également à d'autres types de périphériques ou matériels de stockage : disque dur donc, mais aussi lecteur de CD, dérouleur de bande magnétique, scanner, etc.

Chaque plateau (possédant le plus souvent deux surfaces utilisables) est composé de pistes concentriques séparées les unes des autres par une zone appelée « espace interpiste ». Les pistes situées à une même distance de l’axe de rotation forment un cylindre.

La piste est divisée en secteurs (aussi appelés blocs) contenant les données.

En adressage CHS, il faut donc trois coordonnées pour accéder à un bloc (ou secteur) de disque :

  1. le numéro de la piste (détermine la position du bras portant l’ensemble des têtes) ;
  2. le numéro de la tête de lecture (choix de la surface) ;
  3. le numéro du bloc (ou secteur) sur cette piste (détermine à partir de quel endroit il faut commencer à lire les données).

Cette conversion est faite le plus souvent par le contrôleur du disque à partir d’une adresse absolue de bloc appelée LBA (un numéro compris entre 0 et le nombre total de blocs du disque diminué de 1).

Puisque les pistes sont circulaires (leur circonférence est fonction du rayon - c = 2×pi×r), les pistes extérieures ont une plus grande longueur que les pistes intérieures (leur circonférence est plus grande). Le fait que la vitesse de rotation des disques soit constante quelle que soit la piste lue/écrite par la tête est donc problématique. Sur les premiers disques durs (ST-506 par exemple) le nombre de secteurs par rotation était indépendant du numéro de piste (donc les informations étaient stockées avec une densité spatiale variable selon la piste). Depuis les années 1990 et la généralisation du zone bit recording (en), la densité d’enregistrement est devenue constante, avec une variation du nombre de secteurs selon la piste.

Sur les premiers disques, une surface était formatée en usine et contenait les informations permettant au système de se synchroniser (de savoir quelle était la position des têtes à tout moment). Cette surface était dénommée « servo ». Par la suite, ces zones de synchronisation ont été insérées entre les blocs de données, mais elles sont toujours formatées en usine (dans la norme SCSI il existe une commande FORMAT qui réenregistre intégralement toutes les informations de toutes les surfaces, elle n’est pas nécessairement mise en œuvre sur tous les disques). Typiquement donc, on trouvera sur chaque piste une succession de :

  1. un petit espace « blanc » en anglais : gap : il laisse à la logique du contrôleur de disque une zone inutilisée de cette piste du disque pendant le temps nécessaire au basculement du mode lecture au mode écriture et inversement (cela permet également de compenser de légères dérives de la vitesse de rotation des surfaces de disque) ;
  2. une zone servo : elle contient des « tops » permettant de synchroniser la logique du contrôleur de disque avec les données qui vont défiler sous la tête de lecture juste après ;
  3. un en-tête contenant le numéro du bloc qui va suivre : il permet au contrôleur du disque de déterminer le numéro de secteur que la tête de lecture va lire juste après (et par là de déterminer également si le bras portant les têtes est positionné sur la bonne piste) ;
  4. les données : ce qui est véritablement stocké par l’utilisateur du disque ;

une somme de contrôle permettant de détecter/corriger des erreurs : cela fournit également un moyen de mesurer le vieillissement du disque dur (il perd petit à petit de sa fiabilité).

Format d’un secteur. Il ne contient pas que les données stockées, mais aussi un préambule permettant de synchroniser le système d’asservissement du disque, un en-tête avec l’identifiant du bloc et enfin une somme de contrôle (Σ) permettant de détecter d’éventuelles erreurs.

Par Stéphane — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2946360
Par Original téléversé par Poil sur Wikipedia français — Auteur : Stéphane 1 avr 2005 à 00:27 (CEST)Source PPT disponible sur demande., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20696945

Les interfaces des disques durs ont largement évolué avec le temps dans un souci de simplicité et d’augmentation des performances. Voici quelques interfaces possibles :

  • Storage Module Device (SMD), très utilisée dans les années 1980, elle était principalement réservée pour les disques de grande capacité installés sur des serveurs ;
  • SA1000, un bus utilisé en micro informatique et dont le ST-506 est un dérivé ;
  • ST-506, très utilisée au début de la micro-informatique dans les années 1980 ;
  • ESDI (Enhanced Small Device Interface), a succédé au ST-506, qu’elle améliore ;
  • IDE (ou PATA par opposition au S-ATA, voir plus loin), la plus courante dans les machines personnelles jusqu’à 2005, appelée aussi ATA (AT ATTACHMENT), à ne pas confondre avec S-ATA, cette dernière l’ayant remplacée ;
  • SCSI (Small Computer System Interface), plus chère que l'IDE mais offrant généralement des performances supérieures. Régulièrement améliorée (passage de 8 à 16 bits notamment et augmentation de la vitesse de transfert : normes SCSI-1, SCSI-2, SCSI-3). Cependant, un disque dur SCSI est limité à 16 partitions au maximum (contre 63 pour l'IDE). Désormais très peu utilisée dans les machines grand public ;
  • Serial ATA (ou S-ATA), est une interface série, peu coûteuse et plus rapide qu’ATA (normes SATA, SATA II et SATA III), c’est la plus courante pour le grand public ;
  • SAS (Serial Attached SCSI), qui combine les avantages du SCSI avec ceux du Serial ATA et est compatible avec cette dernière, plus fiable et principalement utilisé sur les serveurs.

Fibre-Channel (FC-AL), est un successeur du SCSI. La liaison est sérielle et peut utiliser une connectique fibre optique ou cuivre. Principalement utilisée sur les serveurs.

Par Alchemist-hp (talk) www.pse-mendelejew.de — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7799579
Par Agrillo Mario Me contacter — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15886682
Par Agrillo Mario Me contacter — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15886703

Les anciens disques durs utilisant l’interface Modified Frequency Modulation (en), par exemple le Maxtor XT-2190, disposaient d’une étiquette permettant de répertorier les secteurs défectueux. Lors du formatage et donc, en vue d’une préparation à l’utilisation, il était nécessaire de saisir manuellement cette liste de secteurs défectueux afin que le système d’exploitation n’y accède pas. Cette liste n’était pas forcément vierge au moment de l’achat.

Avec le temps, les contrôleurs électroniques des disques durs ont pris en charge matériellement les secteurs défectueux. Une zone du disque dur est réservée à la ré-allocation des secteurs défectueux. Les performances s’en trouvent réduites, mais le nombre de secteurs étant faible, l'effet est négligeable pour l'utilisateur.

L’usure de la couche magnétique, importante sur les premiers disques durs mais de plus en plus réduite, peut causer la perte de secteurs de données.

Le contrôleur électronique embarqué du disque dur gère la récupération des secteurs défectueux de façon transparente pour l’utilisateur, mais l’informe de son état avec le SMART (Self-Monitoring, Analysis and Reporting Technology). Dans la grande majorité des cas, le contrôleur ne tente pas une récupération des nouveaux secteurs défectueux, mais les marque simplement. Ils seront ré-alloués au prochain formatage bas-niveau à des secteurs de remplacement parfaitement lisibles. Cependant, suivant le contrôleur et l’algorithme utilisé, la ré-allocation peut avoir lieu pendant le fonctionnement.

Les secteurs défectueux représentent une pierre d'achoppement des sauvegardes matérielles de disques durs en mode miroir (que ce soit au moyen de doubles docks possédant un dispositif de copie matérielle hors connexion ou d'une commande comme dd en Linux), car ces secteurs peuvent exister sur un disque et non sur l'autre, ou encore être à des endroits différents sur chaque disque, rendant dès lors la copie matérielle imparfaite.

Un SSD (pour Solid State Drive) peut avoir extérieurement l’apparence d’un disque dur classique, y compris l’interface, ou avoir un format plus réduit (mSATA, mSATA half-size, autrement dit demi-format) mais est dans tous les cas constitué de plusieurs puces de mémoire flash et ne contient aucun élément mécanique.

Par rapport à un disque dur, les temps d’accès sont très rapides pour une consommation généralement inférieure, mais lors de leur lancement, leur capacité était encore limitée à 512 Mo et leur prix très élevé.

Depuis 2008, on voit la commercialisation d'ordinateur portable (généralement des ultra portables) équipés de SSD à la place du disque dur, par la plupart des grands constructeurs (Apple, Acer, Asus, Sony, Dell, Fujitsu, Toshiba, etc.). Ces modèles peuvent être utilisés par exemple dans un autobus, ce qui serait déconseillé pour un modèle à disque dur physique, la tête de lecture risquant alors d'entrer en contact avec le disque et d'endommager l'un et l'autre.

Comme toute nouvelle technologie les caractéristiques évoluent très rapidement :

  • en 2009, on trouve des modèles de 128 Go à des prix d’environ 350 $ ce qui reste nettement plus cher qu’un disque dur ;
  • mi-2011, on trouve des SSD de 128 Go à moins de 200 euros, et la capacité des SSD disponibles dépasse désormais 1 To ;
  • fin 2012, on trouve des SSD de 128 Go aux alentours de 75 euros ;
  • fin 2014, on trouve des SSD de 240 Go aux alentours de 80 euros ;

en 2016, on trouve des SSD de 1 To aux alentours de 300 euros.

HAUT